Abstract
Abstract Only a minority of cells, the leukemic stem cells (LSC), within AML are responsible for tumor growth and maintenance. Many patients experience relapse after therapy which originates from outgrowth of therapy resistant LSC. Therefore, eradication of LSC is necessary to cure AML. Both the normal hematopoietic stem cells (HSC) and LSC co-exist in the bone marrow (BM) of AML patients and success of anti-LSC strategies relies on specific elimination of LSC while sparing HSC. LSC are contained within the CD34+CD38-, the side population (SP) and the high aldehyde dehydrogenase (ALDH) activity compartments. ALDH is a detoxifying enzyme responsible for oxidation of intracellular aldehydes and high ALDH activity results in resistance to alkylating agents such as cyclophosphamide. It has been shown that ALDH is highly expressed in both normal progenitor and stem cells and in AML blasts. In view of applicability of LSC specific therapies the detoxification by ALDH is clinically very important. A difference in ALDH activity between HSC and LSC might be used to preferentially kill LSC while sparing HSC. To establish ALDH activity differences between HSC and LSC it should be possible to discriminate between them. We have shown that LSC can be identified and discriminated from HSC using stem cell-associated cell surface markers, such as CLL-1, lineage markers (CD7, CD19, CD56) and recently CD34/CD45 expression and cell size characteristics (Terwijn, Blood 111: 487, 2008). This offers the opportunity to identify co-existing LSC and HSC in the AML BM. We now show that, although malignant AML blasts have varying ALDH activity, a common feature of all AML cases is that HSC that co-exist with LSC in BM of AML patients have a higher ALDH activity as compared to their malignant counterparts. We have analyzed ALDH activity in HSC and LSC, both present in the BM from 18 AML patients. In nine BM AML samples, defined as CD34negative (<1%CD34+ blasts), the CD34+ compartment contained only normal CD34+CD38− HSC. The ALDH activity in these CD34+ HSC, is a factor 4,4 (range 1,7–18,9) higher than in LSC. In nine BM AML samples, defined as CD34positive AML, the CD34+CD38- HSC have a 7,7 fold (range 1,73–29,2 fold) higher ALDH activity as compared to putative LSC. In both CD34-positive and CD34-negative AML, we confirmed the identity of HSC and LSC by screening for molecular aberrancies present in AML blasts. The level of the ALDH activity of HSC within the AML BM is similar to that of HSC in NBM of healthy donors. In conclusion, high ALDH activity is an unique marker of normal HSC within the AML BM (irrespective of AML phenotype) at diagnosis. Consequently, AML patients with high ALDH activity in HSC might benefit from treatment with agents that will be converted by ALDH enzymes, such as cyclophosphamide, whereby the difference between the activity in LSC and HSC will define the therapeutic window. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr LB-45. doi:10.1158/1538-7445.AM2011-LB-45
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.