Abstract

Automata theory, algorithmic deduction and abstract interpretation provide the foundation behind three approaches to implementing program verifiers. This article is a first step towards a mathematical translation between these approaches. By extending Buchi's theorem, we show that reachability in a control flow graph can be encoded as satisfiability in an extension of the weak, monadic, second-order logic of one successor. Abstract interpreters are, in a precise sense, sound but incomplete solvers for such formulae. The three components of an abstract interpreter: the lattice, transformers and iteration algorithm, respectively represent a fragment of a first-order theory, deduction in that theory, and second-order constraint propagation. By inverting the Lindenbaum---Tarski construction, we show that lattices used in practice are subclassical first-order theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.