Abstract

Purpose The aim of this study was to calculate microdosimetric distributions for low energy electrons simulated using the Monte Carlo track structure code Geant4-DNA. Materials and Methods Tracks for monoenergetic electrons with kinetic energies ranging from 100 eV to 1 MeV were simulated in an infinite spherical water phantom using the Geant4-DNA extension included in Geant4 toolkit version 10.2 (patch 02). The microdosimetric distributions were obtained through random sampling of transfer points and overlaying scoring volumes within the associated volume of the tracks. Relative frequency distributions of energy deposition f(>E)/f(>0) and dose mean lineal energy (yD) values were calculated in nanometer-sized spherical and cylindrical targets. The effects of scoring volume and scoring techniques were examined. The results were compared with published data generated using MOCA8B and KURBUC. Results Geant4-DNA produces a lower frequency of higher energy deposits than MOCA8B. The yD values calculated with Geant4-DNA are smaller than those calculated using MOCA8B and KURBUC. The differences are mainly due to the lower ionization and excitation cross sections of Geant4-DNA for low energy electrons. To a lesser extent, discrepancies can also be attributed to the implementation in this study of a new and fast scoring technique that differs from that used in previous studies. For the same mean chord length, the yD calculated in cylindrical volumes are larger than those calculated in spherical volumes. The discrepancies due to cross sections and scoring geometries increase with decreasing scoring site dimensions. Conclusion A new set of yD values has been presented for monoenergetic electrons using a fast track sampling algorithm and the most recent physics models implemented in Geant4-DNA. This dataset can be combined with primary electron spectra to predict the radiation quality of photon and electron beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.