Abstract

Abstract Many immunotherapies act by enhancing T-cell killing of tumor cells. Cytotoxic T cells recognize antigens presented by class I major histocompatibility complex (MHC-I) proteins on tumor cells. Our studies suggest that medulloblastomas and high-grade gliomas lacking the p53 tumor suppressor do not express surface MHC-I and are therefore resistant to immune rejection. Mechanistically, this is because p53 regulates expression of the peptide transporter Tap1 and the aminopeptidase Erap1, which are required for MHC-I trafficking to the cell surface. Treatment with tumor necrosis factor or lymphotoxin beta receptor agonist rescues expression of Erap1, Tap1, and MHC-I on p53 mutant tumor cells. In vivo, TNF treatment prolongs survival and markedly augments the efficacy of the immune checkpoint inhibitor anti-PD-1. These studies identify p53 as a key regulator of immune evasion in vivo and suggest that TNF could be used to enhance sensitivity of p53-mutant tumors to immunotherapy. Citation Format: Alexandra Garancher, Hiromichi Suzuki, Svasti Haricharan, Meher B. Masihi, Jessica M. Rusert, Paula S. Norris, Florent Carrette, Megan M. Romero, Sorana A. Morrissy, Patryk Skowron, Florence M.G. Cavalli, Hamza Farooq, Vijay Ramaswamy, Alaide Morcavallo, Jacob J. Henderson, James M. Olson, Yoon-Jae Cho, Xiao-Nan Li, Louis Chesler, Marco A. Marra, Oren J. Becher, Linda M. Bradley, Carl F. Ware, Michael D. Taylor, Robert J. Wechsler-Reya. Overcoming immune evasion in pediatric brain tumors [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr IA11.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call