Abstract

Abstract Given the activity noted with both CTLA-4 or PD-1 blockade, clinical trials are now investigating combination checkpoint blockade. The most mature data with a combination of ipilimumab + nivolumab in melanoma showed a response rate of 40% across dose cohorts with >50% in some cohorts in the context of manageable toxicity. Such responses are generally durable, even when treatment was stopped early for toxicity. Unlike in studies of PD-1 blockade monotherapy, there was no significant difference in clinical activity based on tumor expression of PD-L1. Phase 2 and 3 trials of this combination have similarly shown high rates of activity in melanoma with phase 1 programs in numerous other tumor types. Attention is being paid to the reasons underlying the efficacy of checkpoint blockade in certain malignancies. One hypothesis has been that cancers having a high mutational load may be more amenable to immune modulation by virtue of the larger number of potential neo-epitopes present, fostering baseline immune recognition that can then be potentiated by checkpoint blockade. We have found that melanoma patients having long term clinical activity with ipilimumab have a significantly greater median number of non-synonymous passenger mutations, compared with patients who do not respond or those who have only short-term regression. Strategies to enhance baseline immune reactivity are therefore necessary to investigate as means to improve the impact of checkpoint blockade on a broad spectrum of cancers. Citation Format: Jedd D. Wolchok. Combination checkpoint blockade. [abstract]. In: Proceedings of the CRI-CIMT-EATI-AACR Inaugural International Cancer Immunotherapy Conference: Translating Science into Survival; September 16-19, 2015; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2016;4(1 Suppl):Abstract nr IA10.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call