Abstract

Abstract Over 150 types of post-transcriptional RNA modifications have been identified in all kingdoms of life. We have discovered the first two RNA demethylases, FTO and ALKBH5, which catalyze oxidative demethylation of the most prevalent modifications of mammalian messenger RNA (mRNA) and other nuclear RNA, N6-methyladenosine (m6A). These findings indicate that reversible RNA modification could impact biological regulation analogous to the well-known reversible DNA and histone chemical modifications. We have also characterized proteins that selectively recognize m6A-modified mRNA and affect the translation status and lifetime of the target mRNA, as well as molecular machines that deposit the m6A methylation on mRNA. Functional studies reveal m6A methylation as a critical mechanism to synchronize groups of transcripts for coordinated metabolism, translation, and decay, allowing timely and coordinated protein synthesis and transcriptome switching during cell differentiation and development. Misregulations of these processes lead to embryo lethality and human diseases such as cancer. I will focus on our discoveries of how aberrant expressions of m6A regulators could contribute to human cancer. I will also present effects of m6A regulation on immune response related to cancer progression. Citation Format: C He. RNA Methylation in human cancer [abstract]. In: Proceedings of the 2019 San Antonio Breast Cancer Symposium; 2019 Dec 10-14; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2020;80(4 Suppl):Abstract nr BS1-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call