Abstract

Abstract The purpose of the studies described here was to identify drug targets and develop a preclinical model for testing therapies that can reduce health disparities for Hispanic children with high-risk acute lymphoblastic leukemia (ALL). Hispanic children are 1.24 times more likely to develop ALL than non-Hispanic whites and that number rises to 2.09 by adolescence and early adulthood. A major contributor to this health disparity is a type high-risk B-cell ALL called CRLF2 B-ALL. CRLF2 B-ALL occurs 5 times more often in Hispanic children than others, is prevalent in adolescents and young adults, and is associated with a high relapse rate and poor prognosis. CRLF2 B-ALL is caused by genetic alterations that result in over expression of the cytokine receptor, CRLF2. The CRLF2 receptor is activated by the cytokine, TSLP, causing downstream activation of the JAK/STAT5 and PI3/AKT/MTOR pathways. A gene target of activated STAT5 in B cell precursors is Mcl-1, a Bcl2 family pro-survival molecule. In addition, Mcl-1 protein levels are known to be increased through post-transcriptional mechanisms by activation of the mTOR pathway. We hypothesized that the normal level of circulating TSLP cytokine could induce CRLF2 activation leading to increased Mcl-1 expression in CRLF2 B-ALL cells. Our data show that TSLP increases phosphorylation of STAT5, as well as AKT and S6 (downstream of mTOR) in primary CRLF2 B-ALL cells from Hispanic pediatric patients, even when activating JAK mutations are present. When CRLF2 B-ALL cells from Hispanic pediatric patients were cultured for 3 days with and without physiological levels of TSLP, flow cytometry showed that expression of the Mcl-1 protein was significantly increased in cultures with TSLP as compared to cultures without TSLP. CRLF2 B-ALL cells treated in vitro with Mcl-1 inhibitor showed dose-dependent increases in caspase 3 activation and apoptosis as indicated by flow cytometry. These data provide evidence that TSLP can contribute to leukemia cell survival and identify Mcl-1 inhibitor as a candidate therapy for CRLF2 B-ALL. Our next step was to develop a preclinical model for testing therapies that target genes, such as Mcl-1, that are regulated by TSLP-induced CRLF2 signals in this disease. Patient-derived xenograft (PDX) models produced by transplanting leukemia cells from patients into immune deficient mice provide an in vivo model of disease that includes contributions of the background genetic landscape that can influence disease progression or treatment outcome in health disparities diseases. PDX models are possible because most cytokines produced in the mouse are active on human cells, however mouse TSLP is species-specific. Thus classic PDX models do not provide TSLP that can activate the CRLF2 receptor that is overexpressed in CRLF2 B-ALL. To address this issue we engineered PDX mice to express physiological levels of human TSLP (+T PDX mice) and control -T mice that lacked human TSLP. In vivo TSLP activity was validated and +T PDX were successfully generated using leukemia cells from two Hispanic pediatric patients with CRLF2 B-ALL. To determine whether +T PDX mice provide a preclinical model of B-ALL that more closely mirrors patients than -T PDX mice, we compared RNAseq gene expression profiles of leukemia cells isolated from +T PDX and -T PDX mice to that from the original patient sample. The gene expression pattern in leukemia cells from +T mice was significantly closer to primary patient sample than that from -T mice. The +T PDX mice described here provide a novel in vivo preclinical model for evaluating efficacy of drugs, such as Mcl-1 inhibitor, in context of the background genetic landscape and physiological human TSLP present in patients. Citation Format: Kimberly J. Payne, Cornelia Stoian, Jacqueline S. Coats, Olivia Francis, Terry-Ann M. Milford, Ineavely Baez, Pierce J. McCarthy, George Mambo, Anna V.C. White, Mariah M.Z. Jackson, Juliette M. Personius, Veriah Vidales, Muhammad Omair Kamal, Shadi Farzin Gohar, Sinisa Dovat. A novel patient-derived xenograft model for evaluating therapies that target the CRLF2 signaling pathway to reduce health disparities for Hispanic children with leukemia. [abstract]. In: Proceedings of the Ninth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2016 Sep 25-28; Fort Lauderdale, FL. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2017;26(2 Suppl):Abstract nr B46.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call