Abstract
Abstract The tumor suppressor p53 is the most frequently mutated gene in cancer. Mutant p53 is a challenge to target in cancer therapy due to its many mutations and the fact that it is an inactivated transcription factor. p73 is a member of the p53 family but very rarely mutated in cancer cells. Therefore, activation of p73 is one of the promising strategies to restore the p53 pathway signaling in cancer therapy. Our laboratory has reported that p73 can be activated by small molecules to restore p53 pathway signaling via induction of p73 expression or interruption of p73 interaction with mutant p53. In the present study, we explored a strategy for releasing p73 from a mutant p53 inhibitory complex by induction of mutant p53 degradation using small molecule NSC59984. We previously reported that NSC59984 induces mutant p53 degradation and restores p53 pathway signaling through p73 in p53-mutant cancer cells. To address the mechanism of whether p73 is released from a mutant p53 inhibitory complex to transcriptionally regulate p53 targets, we performed p53-RE-luc reporter assays and Chromatin Immunoprecipitation (ChIP)-PCR in cancer cells with overexpression of p73. We found NSC59984 enhances p73-mediated signaling based on p53 target (such as p21 and noxa) induction at the protein level and p53-RE-luc reporter assay. Further ChIP-PCR analysis showed that NSC59984 treatment increases p73-binding to the p21 and Noxa promoters. These results taken together suggest that NSC59984 enhances p73 transcriptional activity to restore the p53 pathway signaling. It is also well known that p73 activity is regulated through a complex mechanism such as post-translational modifications and protein-protein interactions. We found that NSC59984 can stimulate the ERK2 signaling pathway. The MEK1 inhibitor U0126 partially blocked p73 binding to the p21 and Noxa promoters and their gene expression in cells treated with NSC59984, and this correlated with the rescue of mutant p53 stabilization. These results suggest that p73 is released from mutant p53 inhibitory complex and further stimulated through ERK2 signaling, as a mechanism of tumor suppression in tumors with mutant p53. Citation Format: Shengliang Zhang, Wafik S. El-Deiry. Small-molecule NSC58874 releases and activates p73 via induction of mutant p53 degradation in cancer cells [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 962.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.