Abstract

The precise role of cardiac myosin binding protein C (cMyBP-C) on actomyosin interaction (AMI) remains unknown. We hypothesized that the lack of cMyBP-C impaired cardiac AMI. Experiments were performed on 16 weeks old cMyBP-C −/− (KO) and age-matched wild-type (WT) mice (n=20/group). In vitro mechanical and energetics properties were performed on left ventricular (LV) papillary muscles and Huxley’s equations were used to characterize AMI. In vitro motility assays were performed using myosin purified from LV. Myosin-based sliding velocities of actin filaments were analyzed at baseline, after pretreatment of the myosin solution with 10 umol of the catalytic subunit of PKA and/or in the presence of increasing amount of α-actinin, an actin-binding protein that acts as an internal load thereby providing an index of relative isometric force. Western-blot analysis was used to quantify cMyBP-C and phosphorylated cMyBP-C in myosin solutions. Compared to WT, both total tension and maximum shortening velocity were lower in KO (p<0.001). The probability for myosin to be weakly bound to actin was higher in KO than in WT (8.6±0.3 vs. 5.4±0.2%, p<0.05), whereas the number of strongly bound, high-force generated state cross-bridges was lower in KO (6.4±0.9 vs. 11.6±1.0 10 9 /mm 2 , p<0.001). The unitary force per AMI was lower in KO than in WT (p<0.01). At baseline, myosin-based velocities of actin were slower in KO than in WT (1.65±0.01 vs. 1.98±0.01 um/s, p<0.01). The minimum amount of α-actinin needed to completely arrest the thin filament motility was significantly higher in WT than in KO (73.3±1.1 vs 29.1±0.1 ug/l, p<0.001). As expected, cMyBP-C was present in WT myosin solution whereas cMyBP-C was not detected in KO. In WT, PKA induced a 1.6-fold increased in cMyBP-C phosphorylation (p<0.01) associated with a 53±1% increase in the amount of α-actinin required to arrest thin filament motility (p<0.001). PKA did not modify sliding velocity in WT. In KO, PKA had no effect on myosin sliding. We conclude that cMyBP-C regulates AMI by limiting inefficient cross-bridge formation and by enhancing the power stroke step. Phosphorylation status of cMyBP-C appears to play a critical role on cardiac contractility through a direct effect on the myosin molecular motor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.