Abstract

Chagas heart disease is an inflammatory cardiomyopathy which presents with mononuclear infiltrates in the interstitium and myocardial fibrosis in the chronic phase. Incomplete clearance by macrophages of the etiologic agent, Trypanosoma cruzi , is a significant cause of chronic disease development in approximately 30% of those serologically positive for the blood-borne parasite. The differential metabolic status, anaerobic glycolysis and mitochondria-dependent oxidative phosphorylation, are respectively associated with pro-inflammatory (M1) and anti-inflammatory (M2) functional activation of macrophages. Reactive oxygen species (ROS) have been shown to be an intracellular signal for glycolysis while peroxisome proliferator-activated receptors (PPARs) that enhance fatty acid oxidation provide transcription control of macrophage functional state. In our studies using diverse T. cruzi isolates, we showed that SylvioX10 (virulent), but not TCC (non-virulent), isolates are able to differentially control extracellular and intracellular ROS levels in macrophages. We found in macrophages infected with SylvioX10, the nuclear expression of PPAR-α was increased by 18 hours post-infection, and mitochondrial metabolic activity was similar to that of not-infected and M2 controls; which indicates anti-inflammatory function of macrophages, and therefore prohibiting T. cruzi clearance. In our ongoing studies, we are examining the impact of PPAR-α inhibitors in modulating the metabolic gene expression profile, functional phenotype and parasite survival in macrophages. Our data will provide the first indication that host macrophages have deficient pro-inflammatory capacity due to sub-optimal glucose oxidation, and enhancing the metabolism that supports T. cruzi clearance will provide a valuable basis for a strategy to arrest Chagas disease progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call