Abstract

Background : Activated factor XIII (FXIIIa) is a blood transglutaminase that mediates fibrinolytic resistance and is a hallmark of acute thrombi. Noninvasive molecular imaging of FXIIIa may offer a novel approach to identify acute thrombi and to gauge fibrinolytic resistance in vivo. Here we developed and validated a FXIIIa thrombosis imaging strategy using noninvasive integrated SPECT/CT. Methods: A FXIIIa-targeted peptide agent (F13) was synthesized using NQEQVSPLTLLK chelated to DOTA and then labeled with 111 InCl 3 . A control agent (C13, 111 In-NAEQVSPLTLLK) was analogously synthesized. In vitro validation of the F13 agent was performed in human plasma clots. Next, the in vivo blood-half life of F13 was determined in mice (n=4). In vivo thrombosis studies (n=15 mice) were then performed using 10% ferric chloride jugular venous thrombi aged 1 hour or 16 hours. Mice were intravenously injected with 200 μCi of F13 or C13. After 4 hours, mice underwent integrated CT angiography (72 μm isotropic resolution) and SPECT imaging (32 minute acquisition). In situ thrombi were then resected for radioactivity and weight measurements. Results : Human plasma clots incubated with F13 showed 280–740% greater counts per minute (CPM) than controls (p<0.01). F13 binding was dose-dependent and >90% inhibited by pretreatment with iodoacetamide, an alkylating agent. The blood half-life of F13 was calculated to be 16 minutes. In one hour thrombi, in vivo SPECT/CT imaging revealed strong focal F13 SPECT signal in the co-registered ipsilateral venous thrombi but not the contralateral normal jugular vein. One hour thrombi in the F13 group had 15-fold greater radioactivity than the C13 group (4.6±3.6% vs. 0.3±0.2% injected dose per gram tissue, IDGT, p<0.01). Compared to 1 hour thrombi, 16 hour old thrombi had 4-fold less F13 radioactivity (1.1%±0.1% IDGT, p<0.05). Conclusions : Blood transglutaminase FXIIIa can be noninvasively detected using a FXIIIa-sensitive and specific imaging agent for integrated SPECT/CT. The current in vivo results further validate that activated factor XIII is a hallmark of acute thrombi and declines in activity over time. This clinically translatable imaging strategy could permit visualization of FXIIIa in patients with thrombotic syndromes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.