Abstract

Regeneration of mammalian heart is limited due to the extremely low renewal rate of cardiomyocytes and their inability to reenter the cell cycle. The Hippo pathway controls heart size during development and represses postnatal heart regeneration by repressing cardiomyocyte proliferation. Our approach for activating adult heart regeneration is to uncover the mechanisms responsible for repression of cardiomyocyte proliferation. We have previously found that deletion of Salv, a modulator of the Hippo pathway, results in myocardial damage repair in postnatal and adult hearts. Deletion of Salv results in activation of the transcription factor, Yap, which positively regulates cytoskeleton and cell cycle genes. We also found that the components of dystrophin glycoprotein complex (DGC) are the target of Yap and DGC regulates heart regeneration. The dystrophin glycoprotein complex (DGC) is essential for muscle maintenance by anchoring the cytoskeleton and extracellular matrix. Disruption of the DGC results in muscular dystrophies, including Duchenne muscular dystrophy, resulting in both skeletal and cardiac myopathies. To explore the connection between DGC and the Hippo pathway, we conditionally deleted Salv in the mdx background, a mouse model of muscular dystrophy. We found that simultaneous disruption of the DGC and the Hippo pathway leads an increased cardiomyocyte proliferation after heart damage. This is associated with increased activity of Yap, suggesting DGC negatively regulate Yap to repress proliferation. We also found that one of the components DGC, dystroglycan directly binds Yap and anchors to the membrane. Our findings provide new insights into the mechanisms leading to heart repair through proliferation of endogenous cardiomyocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call