Abstract

Abstract Adaptive metabolic switches are proposed to underlie conversions between cellular states during normal development as well as in cancer evolution, where they represent important therapeutic targets. However, the full spectrum, characteristics and regulation of existing metabolic switches are unknown. We propose that metabolic switches can be recognised by locating large alternating gene expression patterns and associate them with specific metabolic states. We developed a method to identify interspersed genesets by massive correlated biclustering (MCbiclust) and to predict their metabolic wiring. Testing the method on major breast cancer transcriptome datasets we discovered a series of gene sets with switch-like behaviour, predicting mitochondrial content, activity and central carbon fluxes in tumours associated with different switch positions. The predictions were experimentally validated by bioenergetic profiling and metabolic flux analysis of 13C-labelled substrates and were ultimately extended by geneset analysis to link metabolic alterations to cellular states, thus predicting tumour pathology, prognosis and chemosensitivity. The method is applicable to any large and heterogeneous transcriptome dataset to discover metabolic and associated pathophysiological states. Citation Format: Michela Menegollo, Robert Bentham, Neill Patani, Robert C. Stein, Mariia Yuneva, Gyorgy Szabadkai. Multi-state gene cluster switches determining the adaptive mitochondrial and metabolic landscape of breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 7559.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call