Abstract
Abstract Castration resistant prostate cancer (CRPC) is a significant cause of mortality worldwide. In recent years, treatment modalities that improve survival have emerged including taxane chemotherapy and second generation androgen signaling inhibitors, among others. Indeed, today the first line chemotherapeutic docetaxel as well as the second line agent cabazitaxel are mainstays of treatment. However, CRPC inexorably progresses to a chemotherapy resistant state that ultimately precedes lethality. Elucidating the molecular determinants of aggressiveness in chemotherapy resistant CRPC may therefore stimulate new therapeutic strategies that improve clinical outcomes. We used laboratory models and clinical databases to identify GATA2 as a regulator of chemotherapy resistance and tumorigenicity in this context. Whole genome expression profiling, clinical validation and genetic screening approaches revealed that GATA2 regulates a consensus signature of cancer progression associated genes. Mechanistically, direct upregulation of the growth hormone IGF2 emerged as a significant mediator of the aggressive properties regulated by GATA2. IGF2 in turn activated IGF1R and INSR as well as a downstream polykinase program. The characterization of this axis prompted a novel combination strategy whereby dual IGF1R/INSR inhibition restored the efficacy of chemotherapy and improved survival in preclinical models. These studies reveal a GATA2-IGF2 aggressiveness axis in chemotherapy resistant prostate cancer and identify a therapeutic opportunity in this challenging disease. Citation Format: Samuel J. Vidal, Veronica Rodriguez-Bravo, Aidan Quinn, Estrelania Williams, Janis de la Iglesia-Vicente, Xiaochen Sun, Xintong Chen, Yujin Hoshida, Carlos Cordon-Cardo, Josep Domingo-Domenech. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 733. doi:10.1158/1538-7445.AM2015-733
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.