Abstract

Abstract Targeting of mutated oncogenes has led to the identification of new targeted therapies. However, druggable oncogenes do not occur in most cancers. Systematic identification of signaling pathways required for the fitness of cancer cells will facilitate the development of new cancer therapies. We used gene essentiality measurements in 793 cancer cell lines to identify selective co-essentiality modules and found that a ubiquitination ligase complex composed of UBA6, BIRC6, KCMF1 and UBR4, which encode an E1, E2 and two heterodimeric E3 subunits, respectively, is required for the survival of a subset of epithelial tumors. Suppressing BIRC6 in cell lines that are dependent on this complex led to a substantial reduction in cell fitness in vitro and potent tumor regression in vivo. Mechanistically, BIRC6 suppression resulted in selective activation of the integrated stress response (ISR) by stabilization and upregulation of the heme-regulated inhibitor (HRI), a direct ubiquitination target of the UBA6/BIRC6/KCMF1/UBR4 complex. These observations uncover a novel ubiquitination cascade that regulates ISR and highlight the potential of ISR activation as a new therapeutic strategy. Citation Format: Lisa D. Cervia, Tsukasa Shibue, Benjamin Gaeta, Ashir A. Borah, Lisa Leung, Naomi Li, Nancy Dumont, Alfredo Gonzalez, Nolan Bick, Mariya Kazachkova, Joshua M. Dempster, John M. Krill-Burger, Federica Piccioni, Namrata D. Udeshi, Meagan E. Olive, Steven A. Carr, David E. Root, James M. McFarland, Francisca Vazquez, William C. Hahn. A ubiquitination cascade regulating the integrated stress response and survival in carcinomas [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 73.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call