Abstract

Long noncoding RNAs (lncRNAs) have been shown as crucial molecular regulators in various biological processes and diseases. Recently we demonstrated that lncRNA H19 is highly upregulated during abdominal aortic aneurysm (AAA) development and progression in murine models (Angiotensin II in ApoE-/- mice; porcine pancreatic elastase model (PPE) in C57BL/6 mice). Experimental H19 knock-down using specific antisense LNA oligonucleotides showed a significant reduction in AAA growth in both models. Aim of this current study was to utilize genetically mutated H19-depleted mice (H19-/-) vs. wildtype littermate controls, to assess their behavior upon experimental AAA induction using PPE. In addition, we studied the proliferation rates of smooth muscle cells, originating from either H19-/- or H19+/+ mice in a kinetic live-cell imaging system. H19-/- on a C57BL/6J background were exposed to PPE. The aortic diameter in H19-/- mice was compared to WT littermate controls (upon PPE-AAA induction) at baseline, and then consecutively at days 7, 14, and 28. Primary mouse aortic smooth muscle cells were isolated from wild type or H19-depleted aortas, and cultured and monitored in the IncuCyte live cell imaging system for 48 hours, in an effort to study their proliferation rate. H19-/- mice upon PPE-AAA induction displayed significantly lower diameters throughout the study compared to WT controls. Primary aortic smooth muscle cells from H19-depleted mice showed greatly increased proliferation rates (based on cell confluency detection) in our kinetic live-cell imaging system in comparison to WT control cells. In conclusion, our study in H19-depleted mice supports our previously presented efforts, that H19 is an important contributor to experimental AAA development and progression. Further mechanistic studies will have to reveal the molecular properties of this long non-coding RNA in smooth muscle cell survival and proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.