Abstract

The calcium composition of atherosclerotic plaque has predictive value for increased risk of cardiovascular events. Inflammation is associated with atherosclerotic calcification, but the immune signaling that regulates calcium mineralization in plaque is minimally understood. The hematopoietic Rac family member, Rac2, modulates the activation of immune cells and has potential to influence plaque osteogenesis. Both aortic plaque from ApoE -/- mice fed a high fat diet and coronary plaque from patients revealed increased Rac1:Rac2 expression ratios, driven by dynamic Rac2 expression, to be associated with calcified plaque. On high fat diet, Rac2 -/- ApoE -/- mice demonstrated comparable serum cholesterol and plaque burden relative to ApoE -/- mice, but histology identified differences in plaque structure and cellularity. MicroCT and calcium-targeted imaging identified increased atherosclerotic calcification, which was associated with elevated expression of osteogenic transcription factors and was dependent on the hematopoietic compartment. Calcified plaque expressed higher IL-1β mRNA levels, and serum revealed increased IL-1β protein concentrations. Rac2 -/- ApoE -/- macrophages demonstrated increased activation of Rac1 and consequent Rac1-dependent IL-1β secretion. Downstream of Rac1, NF-κB and reactive oxygen species (ROS) signaling drove IL-1β production by increasing IL-1β mRNA expression and caspase1 activation. Cultured mouse aorta smooth muscle cells mineralized calcium in an IL-1β dose-dependent manner, and the enhanced atherosclerotic calcification in vivo was inhibited by IL-1 receptor antagonist, confirming a cause-and-effect relationship. In patients with stable coronary artery disease, high coronary calcium burden was associated with increased serum IL-1β, and patients with combined elevations in calcium and IL-1β had more events driven by higher mortality, reinforcing the relevance of this inflammatory calcification signaling axis to human disease. Therapeutic targeting of IL-1β expression through the balance of Rac activation has potential to impact patient care by modulating atherosclerotic calcification and consequent cardiovascular events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.