Abstract

Background: Left ventricular hypertrophy (LVH) is an independent risk factor for heart failure and sudden death. In addition, LVH is also a compensatory mechanism that helps the heart cope with pressure overload. Stress is considered one factor that is related to cardiac outcomes. Glucocorticoids are primary stress hormones, whose role in the heart is poorly understood. Here, we hypothesize that a reduction in the expression of the glucocorticoid receptor (GR) would decrease cardiac hypertrophy in response to pressure overload. Methods and Results: The GR homozygous mutation (GR-/-) is embryonic lethal. However, GR heterozygous mice (GR+/-) show a normal phenotype. We subjected GR+/- mice to transverse aortic constriction (TAC). At four weeks after TAC, the ratio of heart weight to tibia length increased significantly in wild-type mice (control) littermates compared with GR+/- mice. Cardiac myocyte size was also smaller in GR+/- mice vs controls, suggesting an attenuated cardiac growth response in these mice. In addition, GR+/- hearts displayed increased cell death and enhanced fibrosis in response to TAC. Cardiac function, determined by EF% and FS% (measured using the Vevo2100 imaging system), was significantly reduced in GR+/- mice compared with controls at eight weeks post-operation, while LVEDD was increased. Together, with the increased ratio of lung weight to body weight in GR+/- mice at eight weeks following TAC, this suggests an exaggerated heart failure in GR+/- mice. In vitro, hydrocortisone-induced cell growth in H9c2 cells was abolished by GR knockdown using siRNA. Finally, we looked at the mechanisms by which GR may play a role in the development of hypertrophy. We found reduced ERK-JNK activity in GR+/- hearts, suggesting that the reduced hypertrophic response in GR+/- mice occurs, at least partially, through abolished JNK and ERK activity. Conclusion: The glucocorticoid receptor is required for cardiac hypertrophy and protects the heart from heart failure during cardiac pressure overload.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call