Abstract
Abstract Background: Glioblastoma is the most prevalent and severe type of malignant brain tumor in adults. Although the genetic make-up initiating glioblastoma is increasingly better understood, a better understanding in the mechanisms that drive its evolution, heterogeneity and therapy resistance may reveal new directions for therapy development. To get better insights into glioblastoma evolution, we analyzed and de-convoluted transcriptomes of primary and recurrent glioblastoma resections. Material and Methods: Matching primary and secondary resections from n=185 glioblastoma patients were collected as part of EORTC Study 1542. The study was extended with tumor pairs from n=51 patients from the international GLASS study. The datasets were subjected to differential and deconvolution analysis using in-house algorithms. Results: When mapping the tumor samples into a reduced Glioblastoma Intrinsic Transcriptional Subtype space, we visualized subtype traversal, indicating that the CL subtype most often switches. As we found no more transitions from MES to other subtypes than to be expected by chance, we concluded that MES is an end-state. On average, tumor cell percentages decreased from ~67% to ~50% mostly due to an increase in TAM/microglia. Differential expression analysis was performed with correction for tumor cell percentages. While expression of most known oncogenes did not change considerably over time, marker genes of TAM/microglia, neurons and oligodendrocytes were up-regulated whereas endothelial cell markers were down-regulated over time. Furthermore, a cluster of ~30 extracellular matrix-associated genes increase significantly over time. A signature representing the gene-set was significantly associated with poor survival; high signatures were in particular associated to survival in secondary resections (P = 6.613e-06, Kaplan-Meier estimator). This suggests that the increase of extracellular matrix expression fulfils an important role in glioblastoma evolution. Conclusion: Using a large cohort, we interrogated changes in the glioblastoma transcriptome over time and found that in particular the composition of the tumor and its environment changes. The tumor cell percentage drops, suggesting more invasion or recruitment of non-malignant cells or a combination of both. This change is independent of an increase in the prognostic increase in extracellular matrix expression. Citation Format: Youri Hoogstrate, Kaspar Draaisma, Santoesha A. Ghisai, Iris de Heer, Levi van Hijfte, Wouter Coppieters, Melissa Kerkhof, Astrid Weyerbrock, Marc Sanson, Ann Hoeben, Slávka Lukacova, Giuseppe Lombardi, Sieger Leenstra, Monique Hanse, Ruth Fleischeuer, Colin Watts, Joseph McAbee, Nicos Angelopoulos, Thierry Gorlia, Vassilis Golfinopoulos, Johan M. Kros, Vincent Bours, Martin J. van den Bent, Pierre A. Robe, Pim J. French. Transcriptional evolution of glioblastoma reveals changes in bulk composition, mesenchymal sub-type as end-state, and a prognostic association with increased extracellular matrix gene expression [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 6140.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.