Abstract
Abstract Women of African descent are at an increased risk of developing and dying from aggressive subtypes of breast cancer. A connection between aggressive disease and Western Sub-Saharan African ancestry has been postulated, but it remains largely unknown to what extent breast cancer in Africa is reminiscent of breast cancer in U.S. African American (AA) women who experience disproportionately high mortality rates. We performed ATAC- and RNA-sequencing on 9 human triple-negative breast cancer cell lines of U.S. origin and discovered that African ancestry influences the chromatin landscape, leading to disparate transcription factor (TF) activity and downstream gene expression patterns indicative of an aggressive tumor biology. Here, we describe an ambitious study that employs single-nucleus (sn) ATAC- and RNA-sequencing (snMultiome) of frozen breast tumors to characterize chromatin accessibility and gene expression patterns with single-cell resolution in AA (n=33), Kenyan (n=25), and European American (EA, n=24) women in relation to genetic ancestry, risk factor exposures, clinical characteristics, and 5-year survival. To achieve this, we successfully isolated intact, high-quality single nuclei from archival frozen breast tumor tissue through an optimized combination of enzymatic digestion and automated tissue homogenization. We performed snMultiome sequencing of 82 tumors using the 10x Genomics platform. Following filtering, normalization (SCT for snRNA; LSI for snATAC), peak calling (MACS2), and integration (Harmony), our dataset includes a total of 296,557 nuclei. Cancerous (163,419 nuclei) and non-cancerous (133,138 nuclei) cells were distinguished based on DNA copy number (CopyKat). Within the microenvironment, 11 major immune, epithelial, and stromal cell types were successfully annotated, exhibiting distinct patterns by population group (e.g. AA tumors showed markedly increased abundance of myeloid and T-cells, while Kenyan tumors showed increased abundance of pericytes and fibroblasts). A large number of enriched TFs within each cell type varied significantly by population group, suggesting distinct chromatin accessibility patterns related to genetic ancestry. Within cancerous cells, striking intra- and inter-tumoral heterogeneity was observed by genetic ancestry even within molecular subtype groups. Current efforts focus on in-depth molecular characterization of ancestry- and risk factor-related differences in the tumor epithelium and microenvironment and distinct signatures present in lethal disease. This project holds the potential to yield crucial insights into how ancestry or other factors may influence the etiology of different breast cancer subtypes, as well as produce clinically actionable biomarkers and therapeutic targets to enhance precision medicine within patient populations at high risk for aggressive disease. Citation Format: Alexandra R. Harris, Huaitian Liu, Brittany Jenkins-Lord, Tiffany H. Dorsey, Francis Makokha, Shahin Sayed, Gretchen Gierach, Stefan Ambs. Investigation of breast tumor biology and microenvironment in women of African descent using a single cell multiomic approach [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 6108.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.