Abstract

Abstract Neuroblastoma is a childhood cancer originating from embryonic neuronal progenitor cells and is the most common cancer diagnosed in infants. Although the majority of patients respond to initial chemotherapy, most high-risk patients suffer relapse due to therapy resistance. Here, we generated single-cell transcriptome and bulk whole-genome sequencing data of diagnosis and post-therapy samples from 23 patients diagnosed with high-risk neuroblastoma. We found two distinct adrenergic populations in the patient samples. Most tumor cells showed a mature sympathoblast phenotype whereas a small fraction was in an undifferentiated state with activation of protein translation, unfolded protein, and oxidative phosphorylation pathways. We found that therapy-resistant tumor cells in these two subpopulations had distinct characteristics. The more mature resistant subpopulation upregulated genes associated with epithelial-to-mesenchymal transition, including TWIST1, PLCB1 and CD276. The undifferentiated resistant subpopulation upregulated Ras signal transduction and TP53 pathway genes. Analysis of the immune microenvironment revealed that most tumor-associated macrophages became more immunosuppressive post-therapy via multiple newly gained signaling interactions including the complement signaling pathway. We discovered a limited infiltration of T lymphocytes in the tumor microenvironment, and chemotherapy induced an effector state with upregulated mTOR signaling and metabolism. Overall, our study revealed subpopulations of tumor cells in neuroblastoma that responded differently to induction chemotherapy. Our findings uncovered distinct molecular signatures of the resistant cells and their interactions with the immune microenvironment, paving the way for developing novel therapies for high-risk neuroblastoma. Citation Format: Yasin Uzun, Liron D. Grossmann, Chia-Hui Chen, Anusha Thadi, Chi-Yun Wu, Peng Gao, Dinh Diep, Lea Surrey, Daniel Martinez, Tasleema Patel, Qi Qiu, Sarah Johnson, Wenbao Yu, Shane Drabings, Changya Chen, Yuxuan Hu, Gregory Chen, Derek A. Oldridge, Kun Zhang, Hao Wu, Kathrin Bernt, Nancy Zhang, John M. Maris, Kai Tan. Longitudinal single-cell sequencing of high-risk neuroblastoma tumors reveals intrinsic and extrinsic mechanisms of therapy resistance [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 6051.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call