Abstract

Chronic and sustained amplification of ACE2 activity in vivo has required the development of transgenic mice or the use of viral vectors. Minicircle is a new gene delivery technology which is resistant to gene silencing, and therefore represents an attractive platform for gene replacement strategies in vivo . Here we cloned cDNA of soluble mouse ACE2 into a circular expression cassette and the resulting ACE2 minicircle (MC) was injected to female FVB mice using iv. hydrodynamic approach (10ug or 30ug/mouse). At 3-7d after MC administration, serum ACE2 activity in mice that received 10ug ACE2MC (n=9) was over 100-fold higher than in controls (n=9) (138±48 vs 0.7±0.2 RFU/uL/hr) and in ACE2MC mice (30ug) (n=8) was almost 1000-fold higher than in controls (n=14) (480 ±153 vs 0.5±0.1 RFU/uL/hr, respectively). Mice that received 10 ug ACE2MC were followed for consecutive serum ACE2 activity monitoring, BP measurements and plasma Ang levels. The increase in serum ACE2 activity was sustained until the end of the study (up to 82 days) (Figure). Despite such a marked increase in serum ACE2 activity in ACE2MC mice, conscious SBP was not different from controls (137±8 vs 138±7 mmHg, respectively). At the end of the study, when Ang II was infused acutely (0.2 ug/kg BW i.p.), the increase in plasma Ang II in ACE2MC mice was significantly reduced compared to control mice (915±154 vs 1420±131 fmoL/mL, p<0.05). Mini-circle delivery of ACE2 results in a dose-dependent and sustained long-term increase in serum ACE2 that efficiently degrades plasma Ang II. Extremely high increases in serum ACE2 activity do not reduce BP probably due to activation of non-ACE2 dependent compensatory Ang-hydrolyzing pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call