Abstract

Endothelium plays important role in protective mechanism of vascular wall. The balance between endothelin-1 (ET-1) and nitric oxide provide endothelial barrier to lipoprotein retain and macrophage recruitment. In contrasts, ET-1 is also a strong vasoconstrictor. In this study, we aim to determine the role of vascular endothelial cells-derived ET-1 in the development of atherosclerosis. For that purpose, we crossbred Vascular Endothelial Cells-specific ET-1 Knockout (VEETKO) mice to ApoEKO mice. ApoE/VEET-DKO exhibited significantly lower ET-1 plasma and mRNA level as compared to ApoEKO mice. No significant differences of blood pressure, plasma cholesterol or lipid profiles were observed in both mice. Surprisingly, after 8 weeks of western diet, we found that the atherosclerotic lesion was exaggerated in the aortic sinus and brachiochepalic artery of ApoE/VEET-DKO mice (n=7) as compared to those of ApoEKO mice (n=7) (ratio/vessel wall, 0.93±0.13vs.0.49±0.09, p<0.05). We further showed the increase in macrophage plaque content and peritoneal macrophage recruitment in DKO mice. To understand the mechanism of vascular protection, we found lower eNOS mRNA level in DKO mice despite only lower tendency of ETB receptor expression. Functionally, the mice lacking ET-1 in endothelial cells showed impaired NO-mediated endothelial function. Decreased vascular protection further led to increase plaque instability in DKO mice. Here we showed that plaque of DKO mice was more lipid enrich as compared to that of ApoEKO (ratio/lesion, 0.56±0.03vs.0.42±0.04, p<0.05). Moreover, lack of ET-1 significantly reduced matrix synthesis following lower SMCs accumulation in the lesion (ratio/vessel wall, 0.28±0.06vs.0.57±0.08, p<0.05), which was mediated by TGFβ. Interestingly, despite similar advance-typed lesion formed, 15% of DKO mice exhibited plaque hemorrhage in brachiochepalic artery. In conclusion, we demonstrated the increase in atherosclerosis and plaque instability in our model. This further suggests that ET-1 produced from vascular endothelial cells is required for protective mechanism in vascular wall in balance with nitric oxide production. Our data imply for the careful monitoring in the use of ET receptor antagonist in clinical setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.