Abstract

Vascular smooth muscle (SMC) phenotypic modulation, the transition from a contractile to a proliferative phenotype accompanied by neointima formation following vascular injury, plays a critical role in the development and progression of several proliferative cardiovascular diseases such as atherosclerosis, hypertension, restenosis after angioplasty or bypass, diabetic vascular complications, and transplantation arteriopathy. A hallmark feature of the phenotypic modulation is the down-regulation of SMC contractile genes. Platelet-derived growth factor-BB (PDGF-BB), a well-known stimulator of SMC phenotypic modulation, down-regulates SMC gene expression via posttranscriptional regulation of the related genes. The post-transcriptional mechanisms involved in SMC phenotypic gene expression, however, remain largely unknown. We found that the down-regulation of SMC contractile genes is caused by abnormal RNA editing of their precursor mRNAs (pre-mRNAs). This abnormal pre-mRNA editing is facilitated by adenosine deaminase acting on RNA (ADAR), which converts adenosines to inosines (A→I editing). PDGF-BB induces ADAR1 while down-regulating the expression of SMC myosin heavy chain (SMMHC) and calponin (CNN). Knockdown of ADAR1 by shRNA restores PDGF-BB-blocked SMMHC and CNN expression, demonstrating that ADAR1 plays an essential role in SMC phenotype modulation. In vivo animal studies show that SMMHC and CNN pre-mRNA is accumulated while their mature mRNA is decreased in balloon-injured rat carotid arteries. Moreover, ADAR1 is highly induced in media layer SMCs initially, and neointima SMCs subsequently following the injury. Of importance, knockdown of ADAR1 dramatically inhibits injury-induced neointima formation, demonstrating a critical role of ADAR1 in vascular remodeling in vivo . Taken together, our study unraveled a novel molecular mechanism, i.e., pre-mRNA editing, governing SMC phenotypic modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.