Abstract

The anthracycline doxorubicin is an effective anti-tumor agent widely used in both adults and children. One major adverse effect of doxorubicin therapy is dose-dependent cardiotoxicity, ranging from asymptomatic reduction in left ventricular ejection fraction to more serious, potentially fatal symptoms including arrythmias and congestive heart failure. The exact mechanism of doxorubicin-induced cardiotoxicity remains unknown. Recently, human induced pluripotent stem cells (hiPSC) have emerged as a potential tool to model cardiac toxicity, but their fetal-like phenotype raises concerns about the translatability of in vitro data to in vivo cardiotoxicity. To overcome this limitation, Biowire™ II platform was used to generate 3D engineered cardiac tissues (ECTs) from hiPSC-derived cardiomyocytes and human cardiac fibroblasts. Using long-term electrical stimulation, ECTs with a phenotype approaching that of adult human myocardium were obtained. The ECTs were then exposed to 1 μM doxorubicin for 8 days followed by 7 days of washout. Measurements of contractile force amplitude at 1 Hz stimulation showed a transient increase in force within 24 hours of doxorubicin exposure followed by decrease in force after 2 days. Intracellular recordings of action potential (AP) showed a decrease in maximum upstroke velocity (dV/dt), AP amplitude (APA), and resting membrane potential (RMP) after 8 days of doxorubicin treatment. In addition, action potential duration (APD) at 30% (APD30) repolarization was increased in doxorubicin-treated ECTs, whereas APD50 and APD90 were decreased. Following 7 days of washout, no difference in force or AP parameters was found between doxorubicin and vehicle-treated ECTs with the exception of APD50 and APD90 which remained abbreviated. A global untargeted analysis of the conditioned media from doxorubicin-treated ECTs identified 204 analytes and revealed an upregulation of redox homeostasis, differential fatty acid metabolism, altered glycolysis and TCA cycle metabolites, and decreased nucleoside metabolism compared to vehicle-treated ECTs. These results show that doxorubicin not only increases oxidative stress, but also irreversibly affects action potential duration which may predispose to cardiac arrhythmias.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call