Abstract

Abstract We report novel methods for the biosynthesis of natively-folded MCoTI-based cyclotides inside live E. coli cells using a split protein splicing unit. The cyclotide MCoTI-cylotides are potent trypsin inhibitors recently isolated from the seeds of Momordica cochinchinensis, a plant member of cucurbitaceae family. Biosynthesis of genetically encoded cyclotide-based libraries opens the possibility of using single cells as microfactories where the biosynthesis and screening of a particular inhibitor can take place in a single process within the same cellular cytoplasm. The cyclotide scaffold has a tremendous potential for the development of therapeutic leads based on their extraordinary stability and potential for grafting applications. We will show an example, where a large cyclotide-based genetically-encoded library was used to screen for low nanomolar antagonists for the Hdm2-HdmX RING-mediated E3 ligase activity. We will also present different strategies to improve the cellular uptake and pharmacokinetic profiles of bioactive cyclotides. Citation Format: Julio A. Camarero. Rapid screening of cyclotide-based libraries for the selection of potent E3 ligase antagonists [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 4841.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call