Abstract

Abstract Pancreatic cancers with aberrant expression of macrophage migration inhibitory factor (MIF) are particularly aggressive. To identify key signaling pathways that drive disease aggressiveness in tumors with high MIF expression, we analyzed the expression of coding and noncoding genes in high and low MIF-expressing tumors in multiple cohorts of pancreatic ductal adenocarcinoma (PDAC) patients. The key genes and pathways identified were linked to patient survival and were mechanistically, functionally, and clinically characterized using cell lines, a genetically engineered mouse model, and PDAC patient cohorts. Here, we report evidence of a novel MIF-driven signaling pathway that inhibits the orphan nuclear receptor NR3C2, a previously undescribed tumor suppressor that impacts aggressiveness and survival in PDAC. Mechanistically, MIF upregulated miR-301b that targeted NR3C2 and suppressed its expression. PDAC tumors expressing high levels of MIF displayed elevated levels of miR-301b and reduced levels of NR3C2. In addition, reduced levels of NR3C2 expression correlated with poorer survival in multiple independent cohorts of PDAC patients. Functional analysis showed that NR3C2 inhibited epithelial-to-mesenchymal transition and enhanced sensitivity to the gemcitabine, a chemotherapeutic drug used in PDAC standard of care. Furthermore, genetic deletion of MIF disrupted a MIF-mir-301b-NR3C2 signaling axis, reducing metastasis and prolonging survival in a genetically engineered mouse model of PDAC. Taken together, our results offer a preclinical proof of principle for candidate therapies to target a newly described MIF-miR-301b-NR3C2 signaling axis for PDAC management. Citation Format: Shouhui Yang, Peijun He, Liming Wang, Jian Wang, Aaron Schetter, Wei Tang, Naotake Funamizu, Katsuhiko Yanaga, Tadashi Uwagawa, Abhay R. Satoskar, Jochen Gaedcke, Markus Bernhardt, B. Michael Ghadimi, Matthias M Gaida, Frank Bergmann, Jens Werner, Thomas Ried, Nader Hanna, H. Richard Alexander, S. Perwez Hussain. A novel MIF signaling pathway drives the malignant character of pancreatic cancer by targeting NR3C2 [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4789. doi:10.1158/1538-7445.AM2017-4789

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.