Abstract

Background: Serum S100A12 and fibroblast growth factor (FGF) 23 are biomarkers for cardiovascular mortality in patients with chronic kidney disease (CKD) and are associated with left ventricular hypertrophy (LVH). FGF23 is induced in cultured cardiac fibroblasts in response to cytokines including IL-6, TNF-a, LPS and S100/calgranulins. Moreover, hBAC-S100 transgenic mice with CKD had increased FGF23 in valvular interstitial cells and exhibited LVH. The present study was designed to examine cardiac FGF23 expression in other murine models of LVH in the absence of CKD. Methods: Hearts from five groups of male mice were studied: (i) C57BL6/J with transgenic expression a bacterial artificial chromosome of the human S100/calgranulins (S1008/9 and S100A12, hBAC-S100), (ii) wild type littermates, (iii) LDLR-/- infused with saline (29 days, 0.9%), (iv) LDLR-/- infused with angiotensin (Ang) II (29 days, 1000 ng/kg/min), and (v) fibroblast specific depletion of angiotensin II type 1a receptor (AT1aR) (S100A4-Cre x AT1aR-/- x LDLR-/-) infused with AngII. Results: hBAC-S100, but not wild type littermate mice, developed significant LVH at 10 months by heart weight/body weight (5.9 ±1.1 mg/g vs. 4.2 ±0.8, p<0.04), decreased E/A ratio, and increased LVPW thickness, and associated with increased expression of FGF23 mRNA and protein in cardiac tissue lysates (2-4 fold increase). Similarly, Ang II induced significant LVH compared to saline infused LDLR-/- mice (6.1±1.3 vs. 3.6 ±0.9 mg/g, p<0.01), and associated with increased mRNA for hypertrophic genes (ANP, BNP, b-MHC, CTGF and Col1a1). However, there was no significant difference in FGF23 mRNA and protein between Ang II and saline infused mice. Cardiac hypertrophy was attenuated in AngII-infused mice with deficiency of AT1aR (S100A4-Cre+/-xAT1aRxLDLR-/-). In vitro, Ang II (100nM) did not induce FGF23 in valvular interstitial fibroblasts or myocytes. Summary: Transgenic expression of S100/calgranulins is sufficient to induce LVH in aged mice with normal renal function, and this is associated with FGF23 expression in cardiac interstitial fibroblasts. Future studies are needed to determine whether cardiac FGF23 promotes LVH in a paracrine manner. However, FGF23 does not play a role in Ang II-induced LVH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call