Abstract
Abstract Fibroblast growth factors (FGFs) and their receptors (FGFR1 through 4) regulate a variety of key cellular processes, including proliferation, migration, survival, and differentiationa. Aberrant activation of FGF/FGFR is strongly implicated in oncogenic signalling in many tumor types. This has stimulated the development of a number of FGFR inhibitors, with diverse kinase inhibition and pharmacological profiles that are currently being evaluated in clinical studies. We conducted a fragment screening campaign and this resulted in identification of a 6-aminoquinoxalinyl fragment with a binding affinity in the micromolar range. Structure-guided medicinal chemistry led to the identification of a novel quinoxaline-based chemical series with nanomolar affinity for FGFR1, 2, 3, and 4, activity in cells, and selectivity with respect to VEGFR-2. Further optimisation resulted in the generation of JNJ-42756493, a compound with favourable drug-like properties that demonstrated strong anti-tumoral activity in a FGFR2-dependent SNU-16 human gastric carcinoma xenograft model. This report represents the first disclosure of the structure-activity relationships as well as the chemical synthesis pathway of the JNJ-42756493 series and illustrates how a fragment-based drug discovery approach has been efficiently used to discover FGFR1-4 inhibitors with nanomolar affinity. aTurner, N. and Grose, R. Nat. Rev. Cancer, 2010, 10, 116-129. Citation Format: Patrick R. Angibaud, Laurence Mevellec, Gordon Saxty, Christophe Adelinet, Rhalid Akkari, Valerio Berdini, Pascal Bonnet, Marine Bourgeois, Xavier Bourdrez, Anne Cleasby, Helene Colombel, Imre Csoka, Werner Embrechts, Eddy Freyne, Ronaldus Gilissen, Eleonora Jovcheva, Peter King, Jean Lacrampe, Delphine Lardeau, Yannick Ligny, Steve Mcclue, Lieven Meerpoel, David R. Newell, Martin Page, Alexandra Papanikos, Elisabeth Pasquier, Isabelle Pilatte, Virginie Poncelet, Olivier Querolle, David C. Rees, Sharna Rich, Bruno Roux, Elodie Sement, Yvan Simonnet, Matthew Squires, Virginie Tronel, Tinne Verhulst, Jorge Vialard, Marc Willems, Steven J. Woodhead, Berthold Wroblowski, Christopher W. Murray, Timothy Perera. Discovery of JNJ-42756493, a potent fibroblast growth factor receptor (FGFR) inhibitor using a fragment based approach. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 4748. doi:10.1158/1538-7445.AM2014-4748
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Cancer Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.