Abstract

Background: Cell migration is an important step involved in heart regeneration and many cardiovascular diseases. However, cell migration dynamics in vivo is poorly understood due to the challenges from mammal hearts, which are opaque and fast beating, and thus individual cardiac cells cannot be imaged or tracked. Aims: In this study, cell migration dynamics in the heart is recorded with a novel strategy, in which fluorescence protein-tagged collagen is secreted from cells and deposited into extracellular matrix, forming visible trails when cells are moving in tissues. As a proof-of-concept, transplanted migration dynamics of cardiac progenitor cells in mouse hearts were investaged. Methods: Stable cell lines expressing mCherry-tagged type I collagen were generated from isolated cardiac progenitor cells, ABCG2 + CD45 - CD31 - cells (side populations), or c-kit + CD45 - CD31 - cells (c-kit + CPCs). The cell migration dynamics were monitored and measured based on the cell trails after cell transplantation into mouse tissues. Results: The stable cell lines form red cell trails both in vitro and in vivo (Fig. 1A & 1B, Green: GFP; Red: mCherry-collagen I, Blue: DAPI, bar: 50 microns). In culture dishes, the cells form visible cell trails of fluorescence protein. The cell moving directions are random, with a speed of 288 +/- 79 microns/day (side populations, n=3) or 143 +/-37 microns/day (c-kit + CPCs, n=3). After transplantation into wild-type mouse hearts, the cells form highly tortuous trails along the gaps between the heart muscle fibers. Angle between a cell trail and a muscle fiber is 16+/-16 degree (n=3). Side populations migrate twice as fast as c-kit+ CPCs in the heart (16.0 +/-8.7 microns/day vs. 8.1+/-0.0 microns/day, n=3, respectively), 18 time slower than the respective speeds in vitro . Additionally, side populations migrate significantly faster in the heart than in the skeletal muscles (26.4+/-5.8 microns/day, n=3). The side populations move significantly faster in immunodeficient mouse hearts (36.7+/-13.3 microns/day, n=3, typically used for studying cell therapies) than in wild-type mouse hearts. Conclusion: For the first time, cell migration dynamics in living hearts is monitored and examined with genetically modified cell lines. This study may greatly advance the fields of cardiovascular biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.