Abstract

Abstract Tumor necrosis factor receptor superfamily (TNFRSF) proteins are widely expressed by immune and tumor cells highlighting their importance in multiple locations and phases of the anti-tumor immune response. Apogenix has developed a proprietary technology platform for the construction of novel hexavalent TNFRSF agonists (HERA) for the treatment of cancer. HERA fusion proteins comprise a perfect molecular mimic of the TNFSF cytokine structure and are based on dimerization of trivalent single-chain TNFSF receptor-binding domains (scTNFSF-RBD) via a Fc-γ receptor (FcγR) binding deficient immunoglobulin Fc domain. As a result of this molecular design, HERA proteins are capable of clustering six receptors in a spatially well-defined manner. Signaling following treatment with the Apogenix HERA “scTNFSF-RBD-Fc fusion proteins” is entirely independent of secondary crosslinking through FcγRs that is required for many agonistic anti-TNFRSF antibodies. The HERA engineering concept has been successfully translated to TRAIL, GITRL, CD40L, LIGHT and CD27L resulting in agonists that are currently in development. CD27L is a potent co-stimulatory molecule that drives T cell activation and survival through interaction with its receptor (CD27). HERA-CD27L is expressed in CHO suspension cells followed by a lab-scale purification process that results in homogenous aggregate-free protein lots. The purified protein binds its respective target-receptor with high affinity. In vitro, HERA-CD27L was able to bind CD27 expressed on primary human CD4+ and CD8+ T cells. Binding significantly increased T cell expansion following αCD3/αCD28 stimulation and leads to increased expression of OX40 on CD4+ T cells and 4-1BB on CD8+ T cells, respectively. In vivo, a single dose of 10mg/kg HERA-CD27L increases clonal expansion of antigen-specific CD8+ T cells upon immunization with Ovalbumin (Ova) in the mouse OT-1 model with a kinetics leading to peak levels of >25% Ova-specific CD8+ T cells at day 6 after treatment. Anti-tumor efficacy of HERA-CD27 was evaluated in MC38-CEA and CT26 colorectal syngeneic murine tumor models. In both models treatment with HERA-CD27L resulted in a dose dependent inhibition of tumor growth. CT26 tumor bearing mice treated with 1mg/kg HERA-CD27L, twice weekly showed an 85% tumor-growth inhibition (TGI) compared to the control group. A significant TGI of 48% could be observed in the MC38-CEA model upon treatment with 10mg/kg, twice weekly. Analysis of peripheral lymphoid tissues in the MC38-CEA bearing mice could furthermore show that HERA-CD27L treatment is accompanied with enhanced memory formation in both CD4+ & CD8+ T cells. In summary, the data on the hexavalent HERA-CD27L indicate a potent immune cell driven anti tumor efficacy. Therefore, HERA-CD27 agonists could be applied for the treatment of cancer as a single agent or in combination with check-point Inhibitors. Citation Format: Christian Gieffers, David Richards, Jaromir Sykora, Mauricio Redondo-Müller, Meinolf Thiemann, Christian Merz, Karl Heinonen Heinonen, Viola Marschall, Harald Fricke, Oliver Hill. Hexavalent CD27 agonists show single agent anti-tumor activity and enhanced memory formation in mouse syngeneic tumor models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4690. doi:10.1158/1538-7445.AM2017-4690

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.