Abstract

Superseding fibrosis through paracrine signals enhances the ventricular dysfunction aftermyocardial infarction (MI). We have earlier reported that within 2 days post-MI a cohort ofpodoplanin (PDPN), a platelet aggregation-inducing type I transmembrane glycoprotein,positive cells populate injured heart and enhance inflammatory response by physicalinteractions with monocytes. Here we explored whether exosomes from these cells couldindependently alter healthy heart physiology and structure. PDPN+ cells were isolated 2 daysafter MI, cultured expanded and activated with TNFα and AngiotensinII. Exosomes derivedfrom activated PDPN+ cells conditioned media were used in vitro treatment of mouse cardiacendothelial cells (mCECs), mouse embryonic fibroblast (MEF) and monocytes and in vivo forthe treatment of healthy mouse hearts. PDPN+ cells derived exosomes (PDPN-exo)reprogramed mCECs to the lymphatic phenotype enhancing the expression of the majorlymphatic lineage markers and upregulated the expression of fibrotic markers suggesting anendothelial-mesenchymal transition. Furthermore, PDPN-exo drove the MEF to myo-fibroblastphenotype and monocytes toward pro-inflammatory phenotype. Proteomic analysis of PDPN-exo suggest these transitions may depend on NOTCH cleavage trough β-γSecretase andSerum Amyloid A3 protein accumulation/mis-folding. In vivo, PDPN-exo were initially injectedinto the left ventricle of healthy mouse hearts followed with exosomes boosters delivered byretro-orbital vein injection. Treated mice developed an extended epicardial fibrosis andamyloidosis with a subsequent impairment in the contractility and increase of the end diastolicand systolic volumes. The fibrotic area was characterized by vessels double positive toendothelial and lymphatic endothelial markers, and infiltrating CD45+ cells. In conclusionthese data suggest that PDPN-exo alter the biology of mCECs, fibroblast and monocytes andparticipate in adverse remodeling after MI; their specific cargo may represent a cohort oftargets for the treatment of cardiac fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call