Abstract

G protein-coupled receptor kinase 4 (GRK4) is known to negatively regulate the dopamine-1 receptor (D 1 R) in human renal proximal tubule cells (RPTC) leading to reduced sodium excretion. c-Myc is a transcription factor involved in positive regulation of G protein-coupled receptor kinase 4 (GRK4). Protein phosphatase 2A (PP2A) inhibits c-Myc by dephosphorylating a residue that normally stabilizes c-Myc. We have previously shown that stimulation of the natriuretic D 1 R in RPTC led to an increased ratio of PP2A/c-Myc binding. Treatment with PMA (protein kinase C inhibitor) led to a decreased PP2A/c-Myc ratio and a lack of cAMP accumulation after stimulation with fenoldopam (FEN, D 1 R agonist). We hypothesized that PP2A plays a key role in regulating natriuresis and that perturbation of PP2A would directly have effects on protein levels of c-Myc, the ratio of PP2A/c-Myc, and the accumulation of cAMP. We used normal RPTCs (nRPTC) and RPTCs that have an uncoupled D 1 R that no longer stimulates adenylyl cyclase (uRPTC). Inhibition of PP2A in uRPTCs with okadaic acid (OA, 100nM, 3 hr) caused an increase in c-Myc protein levels (97.8% ± 18.9 SEM; n=6; p<0.05 (1.44 / 0.73 RFU)), a decrease in the PP2A/c-Myc ratio (-81.8% ± 1.5 SEM; n=6; p<0.05 (1.42 /7.82 RFU)), and a lack of cAMP accumulation upon treatment with SKF38393 (a D 1 R agonist similar to FEN). Activation of PP2A with FTY720 (PP2A activator, 10μM, 3hr) caused a decrease in c-Myc protein levels (- 85.4% ± 2.3 SEM; n=6; p<0.005 (0.11/ 0.73 RFU)), an increase in the PP2A/c-Myc binding ratio by 345.3% ± 90.3 SEM; n=6; p<0.01 (34.82/ 7.82 RFU), and an increase in cAMP accumulation upon stimulation with SKF38393 (94.0% ± 12.4 SEM; n=3; p<0.05 (9.04/4.66 pmole cAMP/mg protein) compared to VEH. In summary, the D 1 R coupling defect found in uRPTCs was restored through activation of PP2A and inhibition of c-Myc. We conclude that PP2A interacts with c-Myc to regulate the natriuretic effect of the D 1 R providing additional insight into the intracellular regulatory events surrounding sodium excretion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call