Abstract

Abstract Introduction: Representing 10% of hematologic malignancies, multiple myeloma (MM) is typified by clonal plasma cell proliferation in the bone marrow (BM) and may progress to therapy-resistant plasma cell leukemia (PCL). Despite many novel therapies, relapse rates remain high as a result of malignant regeneration (self-renewal) of MM cells in inflammatory microenvironments. In addition to recurrent DNA mutations and epigenetic deregulation, inflammatory cytokine-responsive adenosine deaminase associated with RNA (ADAR1)-mediated adenosine to inosine (A-to-I) RNA editing has emerged as a key driver of cancer relapse and progression. In MM, copy number amplification of chromosome 1q21, which contains both ADAR1 and interleukin-6 receptor (IL-6R) gene loci, portends a poor prognosis. Thus, we hypothesized that ADAR1 copy number amplification combined with inflammatory cytokine activation of ADAR1 stimulates malignant regeneration of MM and therapeutic resistance. Methods and Results: Analysis of MMRF CoMMpass RNA sequencing (RNA-seq) data revealed that high ADAR1 expression (n=162 patients) correlated with significantly reduced progression-free and overall survival compared with a low ADAR1 subset (n=159 patients). In contrast to lentiviral ADAR1 shRNA knockdown and overexpression of an editase defective ADAR1 mutant (ADAR1E912A), lentiviral wild-type ADAR1 overexpression enhanced editing of GLI1, a Hedgehog (Hh) pathway transcriptional activator and self-renewal agonist. Editing of GLI1 transcripts enhanced GLI transcriptional activity in luciferase reporter assays, and promoted lenalidomide resistance in vitro. Finally, lentiviral shRNA ADAR1 knockdown reduced regeneration of high-risk MM in humanized serial transplantation mouse models, indicative of reduced malignant self-renewal capacity. Whole-transcriptome RNA-sequencing of primary samples after lentiviral shRNA knockdown of ADAR1 revealed specific modulation of extracellular and immune response genes, while overexpression of wild-type versus edited GLI1 elicited distinct gene expression changes in human myeloma cells analyzed using NanoString nCounter assays. These data demonstrate that ADAR1 promotes malignant self-renewal of MM and, if selectively inhibited, may prevent progression and relapse through modulation of extracellular and immune response genes. Conclusions: Deregulated RNA editing, driven by aberrant ADAR1 activation, represents a unique source of transcriptomic and proteomic diversity, resulting in self-renewal of MM cells in inflammatory microenvironments. In summary, both genetic (1q21 amplification) and microenvironmental factors (inflammatory cytokines, IMiDs) combine to drive GLI1-dependent malignant regeneration in MM. Thus, ADAR1 represents both a vital prognostic biomarker and therapeutic target in MM. Citation Format: Leslie A. Crews, Elisa Lazzari, Phoebe K. Mondala, Nathaniel Delos Santos, Amber Miller, Gabriel Pineda, Qingfei Jiang, Anusha-Preethi Ganesan, Christina Wu, Caitlin Costello, Mark Minden, Raffaella Chiaramonte, A. Keith Stewart, Catriona H. M. Jamieson. Down-modulation of ADAR1-mediated GLI1 editing alters extracellular and immune response genes in multiple myeloma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 4437.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call