Abstract

Background: Inflammasome in microglia are critical to elicit inflammatory cascades in ischemic stroke. Histone deacetylases 3 (HDAC3) regulate acetylation states of histone and non-histone proteins and could be a powerful regulator of inflammatory process in stroke. Methods: Primary microglia, BV2 cells subjected to oxygen glucose deprivation (OGD) or LPS stimulation were applied to mimic inflammatory response in vitro . Middle cerebral artery occlusion (MCAO) model were applied to mimic acute stroke in vivo . Ischemic infarct volume and neurological functions were evaluated through 2,3,5-triphenyltetrazolium chloride (TTC) staining and Neurological Severity Scores (NSS) respectively. Expression of HDAC3, AIM2 inflammasome were detected by western blotting, PCR. Immunofluorescence was used to detect M1/M2 polarization. Luciferase activity of absent in melanoma 2 (AIM2) reporter promoter constructs was measured by fluorospectrophotometer. AIM2 knockdown and over-expression leti-virus were constructed to decrease or increase AIM2 expression. HDAC3 inhibitor RGFP966 was used to inhibit acetylation activity of HDAC3. Results: HDAC3 is widely distributed in cerebral cortex, lateral ventricular , hippocampus, cerebellar cortex ; HDAC3 and AIM2 expression were enhanced in LPS stimulated-microglia and MCAO model. A marked stimulatory effect of RGFP966 on H3K9Ac was observed in nuclear extracts form BV2 cells at the dosage of 15 uM. Treatment of RGFP966 increased both IL-4-stimulated expression of Ym-1 and CD206 at 4 h, 10 h, 24 h, 48 h. AIM2, NLRP-1 and NLRP3 significantly increased in MCAO+Vehicle group compared to sham group, but decreased in MCAO+RGFP966 group. RGFP966 inhibited the elevation of circulatory IL-18 and IL-1β induced by stroke. RGFP966 decreased infracted size and alleviated neurological deficit. Conclusions: HDAC3i alleviated ischemic stroke injury through modulating AIM2 inflammasome and microglia polarization. Selective HDAC3 inhibitor-RGFP966 could be a potential medication for combating ischemic brain injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.