Abstract

The mitochondrial calcium uniporter (MCU) is a multicomponent channel that is the primary mechanism for mitochondrial Ca 2+ uptake ( m Ca 2+ ). We previously reported that the MCU is required for energetic signaling to meet contractile demand during the ‘fight or flight’ response. In addition, we showed that deletion of the pore-forming component ( Mcu gene) protected against mitochondria permeability transition pore (MPTP) opening and ischemia-reperfusion injury. However, results from our study and others questioned the physiological relevance of MCU-mediated Ca 2+ uptake during chronic stress states featuring sustained intracellular Ca 2+ load ( i Ca 2+ ). To address this, we deleted Mcu from cardiomyocytes in adult mice ( Mcu cKO) and implanted osmotic pumps to deliver the β adrenergic agonist isoproterenol (iso, 70 mg/kg/day for 14d). In contrast to controls, Mcu cKO mice lacked contractile responsiveness to chronic βAR stimulation with evidence of LV dysfunction and failure by d14 ( Fig 1 ). Next, we crossed the Mcu cKO with mice overexpressing the β2a subunit (β2a-Tg) of the L-type Ca 2+ channel (LTCC). This model displays enhanced LTCC activity and cardiac contractility, but with added stress such as iso infusion, Ca 2+ overload eventually leads to MPTP-dependent cell death and heart failure. Surprisingly, loss of Mcu in this model was lethal with all mice dying by d13 ( Fig 2 ). Baseline echocardiography revealed that loss of Mcu ablated all β2a-mediated enhancements in LV contractility and accelerated dysfunction post-iso. These findings demonstrate that MCU-mediated m Ca 2+ uptake is critical to meet energetic demand during chronic stress states featuring sustained i Ca 2+ load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call