Abstract
Abstract Cancer cell invasion is an obligatory step for metastatic dissemination that contributes to rapid relapse and a poor survival in TNBC patients. Development of novel therapeutic strategies to block tumor invasion is an unmet need for TNBC treatment and for other tumor types. We reported that decoys with the SID sequence designed to bind and inhibit the function of PAH-2 domain of Sin3A protein markedly prolong survival in the adjuvant setting due to inhibition of metastatic dissemination to the lungs and bone marrow in TNBC mouse models. Here, we show that TNBC cell lines treated with SID decoys (peptides) display a strong in vitro inhibition of migration and invasion. This is accompanied by actin cytoskeleton reorganization with increased cortical actin, and inhibition of proteolytic enzymes (MMP9; MT-MMP1 and uPA) involved in extracellular matrix degradation. DNA microarray and Ingenuity pathway analysis (IPA) showed that the SID decoys inhibit Wnt and TGFβ signaling that is associated with epithelial to mesenchymal transition (EMT). Treatment with SID decoy peptide downregulated WNT/β-catenin-driven transactivation as measured by decreased promoter H3K4me3 and decreased expression of Wnt target genes like LEF1 and TCF7L2. We also show that SID decoys induce translocation of nuclear β-catenin to the cytoplasm in TNBC at 24 hours. Wnt/β-catenin is critical for EMT, cancer stem cell self-renewal, and early invasion in TNBC. TGIF1, a transcription factor that modulates TGFβ and Wnt signaling pathways and known to to interact with the PAH2 domain of Sin3A, can be dissociated from Sin3A complex by SID decoy treatment as measured by co-immunoprecipitation (Co-IP) and proximity linked assay. DNA microarray of SID peptide treated TNBC cells shows inhibition of TGFβ signaling evidenced by downregulation of MMP9, MT1-MMP and PLAU, known target genes of this pathway. This is in line with inhibition of the EMT program predicted by the IPA analysis in SID peptide treated TNBC. Taken together, the results indicate that SID decoys have potential value as therapeutic agents to revert the EMT program in TNBC that should translate into the inhibition of metastasis dissemination and eradication of residual disease in TNBC. To test this in clinic future investigations will involve the use of our previously identified small molecule mimetic of SID peptide, selamectin that is also a FDA approved drug. Use of a recently constructed cyclic stapled peptide that inhibits PAH-2 binding and invasion at <10nM is also anticipated. Citation Format: Yeon-Jin Kwon, Boris A. Leibovitch, Nidhi Bansal, Lutecia Pereira, Edgardo V. Ariztia, Kevin Petrie, Arthur Zelent, Ming-Ming Zhou, Eduardo F. Farias, Samuel Waxman. Inhibition of triple negative breast cancer cell invasion by the targeted interference of Sin3A function affecting Wnt and TGFβ signaling. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4115.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.