Abstract

Abstract Resistance to androgen receptor-targeted therapy due to tumor heterogeneity and clonal evolution is a key challenge for improving prostate cancer outcomes. Despite this, the transcriptomic and chromatin accessibility changes contributing to the emergence of resistance remain incompletely understood at the level of individual cells. Using single-cell assays for transposase-accessible chromatin (ATAC) and RNA sequencing in models of early treatment response and resistance to enzalutamide, we previously identified pre-existing and persistent cell subpopulations that possess regenerative potential when subjected to treatment. Here we analyze the chromatin and transcriptomes of these single cells to characterize their gene regulation and gene expression trajectories. We present evidence of a model of enzalutamide resistance emergence in which the pre-existing and treatment-persistent cells regenerate the bulk of resistant cells. This process is underpinned by chromatin reprogramming that increases the overall relaxation of chromatin upon resistance. We show that the reprogramming of the chromatin further differentially contributes to transcription factor-mediated transcriptional reprogramming via DNA motif exposure in different cell subpopulations. For example, in the treatment-persistent cells, we identify chromatin configurations characterized by the exposure of DNA motifs for GATA2, RELA (a NFkB subunit), CREB1, and E2F1. Pre-existing and treatment-persistent cells consistently display transcriptional features of high developmental potential and RNA velocity analysis identifies them as precursors of cell populations that arise from enzalutamide treatment. We also analyze the pre-existing and treatment-persistent cells in spatial transcriptomics of prostate cancer patient specimens based on their characteristic gene expression profiles. We find these cells to be enriched in cancerous regions of the tissue but also detect them within apparent benign regions, which has potential implications for treatment choice. In summary, we show patterns of gene expression regulation in preclinical models and patient samples that uncover mechanisms of resistance to androgen receptor-targeted therapy in prostate cancer. Citation Format: Sinja Taavitsainen, Nikolai Engedal, Shaolong Cao, Florian Handle, Andrew Erickson, Stefan Prekovic, Daniel Wetterskog, Teemu Tolonen, Elisa M. Vuorinen, Antti Kiviaho, Reetta Nätkin, Tomi Häkkinen, Wout Devlies, Sallamari Henttinen, Roosa Kaarijärvi, Mari Lahnalampi, Heidi Kaljunen, Karolina Nowakowska, Heimo Syvälä, Merja Bläuer, Paolo Cremaschi, Frank Claessens, Tapio Visakorpi, Teuvo L. Tammela, Teemu Murtola, Kirsi J. Granberg, Alastair D. Lamb, Kirsi Ketola, Ian G. Mills, Gerhardt Attard, Wenyi Wang, Matti Nykter, Alfonso Urbanucci. Single-cell transcriptome and chromatin sequencing uncover gene expression and gene regulatory patterns associated with enzalutamide resistance [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 401.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.