Abstract

Mutations disrupting SCN5A coding sequence cause inherited arrhythmias and cardiomyopathy, and SNPs linked to SCN5A splicing, localization and function associate with heart failure-related sudden cardiac death. However, the clinical relevance of SNPs that modulate SCN5A expression levels remains understudied. Recently, we generated a transcriptome-wide map of microRNA (miR) binding sites in human heart and evaluated their interface with polymorphisms. Among >500 common SNPs residing within miR target regions, we identified a synonymous SNP (rs1805126) adjacent to a miR-24 site within SCN5A coding sequence. This SNP is known to reproducibly associate with heart rhythm measurements, but is not considered to be “causal”. Here, we show that miR-24 potently suppresses SCN5A and that rs1805126 modulates this regulation. In further exploring the clinical significance of this, we found that rs1805126 minor allele homozygosity associates with decreased cardiac SCN5A expression and increased mortality in heart failure patients. Unexpectedly, this risk was not linked with arrhythmic sudden cardiac death, but rather, with clinical signs of worsening heart failure (e.g. reduced ejection fraction) and myocardial gene expression changes related to bioenergetics, inflammation and extracellular remodeling. Together, these data attribute a molecular mechanism to this firmly-established GWAS SNP and highlight a novel and surprising link between common variations in SCN5A expression and non-arrhythmic death in heart failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.