Abstract

Abstract Introduction: The mammalian target of rapamycin (mTOR) signaling pathway is an integrating factor in cell physiology that influences many processes like growth, metabolism and proliferation. mTOR signaling is constitutively activated in many cancers. Rapamycin is an allosteric inhibitor of mTOR that targets a subset of mTOR functions via inhibition of the mTORC1 complex. An ATP site-directed mTORC1/2 inhibitor that fully blocks all mTOR functions is desirable as cancer therapeutic. PQR620 is a novel, ATP site directed inhibitor of mTOR that is currently in pre-clinical development. PQR620 potently binds to its target (Kd = 6 nM) and shows excellent selectivity versus related and unrelated kinases [1]. Results: PQR620 inhibits mTOR signaling in stimulated MCF7 cells as detected by PathScan analysis. Excellent tolerability has been observed in mice (MTD = 150 mg/kg). A 14 day GLP toxicological study in rats showed very good tolerability (MTD = 30 mg/kg). Only minor toxicities such as dose-related changes in body weight and blood count were observed. PQR620 was administered to male C57BL/6J mice for a pharmacokinetic (PK) and pharmacodynamics (PD) evaluation. After oral application PQR620 exhibited dose-proportional PK, a maximum concentration (Cmax) in plasma and brain was reached after 30 minutes (4.8 μg/ml and 7.7 μg/ml, respectively). In muscle, Cmax (7.6 μg/ml) was reached after 2 hours. The calculated half-life (t1/2) for plasma and brain was approximately 5 hours. After 8 hours, the total exposure (expressed as AUC0-tz (area under the curve)) was 20.5 μg*h/ml in plasma, while it was approximately 30% higher in both, brain and thigh muscle (30.6 and 32.3 μg*h/ml, respectively). PQR620 potently inhibited mTOR signaling in vivo after administration of a single oral dose of 50 mg/kg. Importantly, no effect on plasma insulin levels was observed. In an OVCAR-3, ovarian carcinoma mouse xenograft, PQR620 effectively attenuated tumor growth using daily, oral dosing. Conclusion: PQR620 potently inhibits mTORC1/2 in vitro and in vivo. The physico-chemical properties of PQR620 result in good oral bioavailability and excellent brain penetration. PQR620 is well tolerated and efficiently inhibits tumor growth in xenograft models. Preclinical data allow for further development of the compound. [1] Beaufils F, Rageot D, et al., Structure-Activity Relationship Studies, Synthesis and Biological Evaluation of PQR620, a Highly Potent and Selective mTORC1/2 Inhibitor, AACR annual meeting 2016 Citation Format: Florent Beaufils, Denise Rageot, Anna Melone, Alexander Sele, Marc Lang, Juergen Mestan, Robert A. Ettlin, Petra Hillmann, Vladimir Cmiljanovic, Carolin Walter, Elisabeth Singer, Hoa HP Nguyen, Paul Hebeisen, Doriano Fabbro, Matthias P. Wymann. Pharmacological characterization of the selective, orally bioavailable, potent mTORC1/2 inhibitor PQR620. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 393A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call