Abstract

Introduction: Metabolic stress including oxidized low density lipoprotein (ox-LDL) cause mitochondrial dysfunction and evoke vascular senescence and atherosclerosis. Mitochondria are highly dynamic organelles that undergo quality control by mitochondrial dynamics and mitophagy. This study aims to clarify whether and how mitochondrial dynamics and mitophagy are involved in the etiology of vascular senescence and arteriosclerosis. Methods: VSMC were stimulated by ox-LDL. We also conducted in vivo experiment using C57BL6 (WT), apolipoprotein E (ApoE) deficient and the double knockout of ApoE mice and Angiotensin II Type1 Receptor (AT1R). Results: Treatment of ox-LDL forced mitochondria to fission through activation of Drp1, induced mitochondrial dysfunction and oxidative stress, and developed cellular senescence. Inhibition of either Drp1, AT1R, MAPK retarded them, suggesting that mitochondrial fission plays key roles to develop premature cellular senescence and is modulated by AT1R/MAPK signal.Administration of ox-LDL decreased the number of mitophagy assessed by electron microscopy and immunohistochemistry of LAMP2 and TOMM20. AT1R signal inhibition increased mitophagy which was not affected by Atg7 knockdown, whereas it was decreased by either Rab9 or Ulk1 knockdown. Immunohistochemistry showed Rab9 dots were co-localized to TOMM20 and LAMP2, whereas LC3 dots were not, suggesting that AT1R signal induces mitophagy through Rab9-dependent alternative autophagy. The degree of vascular senescence was higher, the number of fused mitochondria and mitochondrial function were lower and mitochondrial oxidative stress was higher in ApoE KO than those in WT. DKO attenuated these adverse effect of ApoE KO. Conclusion: AT1R regulates vascular senescence and arteriosclerosis via induction of mitochondrial fission and inhibition of mitophagy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call