Abstract

Abstract Utilization of hydrophobic motifs present in auto-inhibited protein kinases has resulted in the identification of a series of 5,6-dihydrobenzo [h]quinazolin-2-amines with activity as fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors. Herein we describe the combination of a proprietary in silico design process, a new screening paradigm using an array of biochemical and biophysical technologies in conjunction with an established parallel chemistry process for the identification and optimization of a series of novel FGFR inhibitors. These potent FGFR inhibitors exhibit a preference for the inactive form of the kinase, are non-ATP competitive, and exhibit robust cellular pharmacodynamic inhibition as well as in vitro anti-proliferative effects in cells dependent on FGFR and significant anti-tumor activity in appropriate xenograft models in vivo. The design strategy, synthesis, structure activity relationships and in vitro and in vivo biology of selected inhibitors will be presented. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3905. doi:1538-7445.AM2012-3905

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call