Abstract
Abstract Microtissues produced in 3D cell culture are much more representative of actual living tissue compared to monolayers produced in 2D cell culture. In fact, in the area of oncology research, multicellular tumor spheroids are considered an excellent platform for testing drug delivery and efficacy. As the necessity for established 3D cell culture models rises, there is also a need for convenient assays that have been specifically demonstrated to be effective for use with 3D microtissues. The more complex architecture of 3D microtissues demands increased lytic effectiveness and reagent penetration, characteristics that are often only minor considerations for reagents designed for 2D cell culture. Here we report on a variety of bioluminescent and fluorescent cell-based assays applied to hanging-drop spheroids produced from HCT116 colon cancer cells. The first assay to be described is an ATP detection reagent for measuring cell viability. This reagent has both an improved formulation and an optimized assay protocol and has clear advantages over other viability assays. Other cell health assays will also be described, including reagents that measure cell death, apoptosis, mechanistic cytotoxicity, or reporter gene expression. These additional assays do not require a change in formulation, but do require new protocols in order to optimize their effectiveness when applied to 3D microtissues. As with their application to cells in 2D culture, these “add-mix-measure” reagents are robust and amenable to both low- and high-throughput applications. Citation Format: Michael P. Valley, Kevin R. Kupcho, Chad A. Zimprich, Andrew L. Niles, James J. Cali, Jens M. Kelm, Wolfgang Moritz, Dan F. Lazar. Luminescent cell health assays for tumor spheroid evaluation. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 3731. doi:10.1158/1538-7445.AM2014-3731
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.