Abstract

Type 2 diabetes mellitus (DM) adversely affects the outcomes in patients with myocardial infarction (MI), which is associated with the development of left ventricular (LV) remodeling and failure. NAD(P)H oxidase-derived superoxide (O 2 − ) production is increased in DM. However, its pathophysiological significance in advanced post-MI LV failure associated with DM remains unestablished. We thus determined whether an inhibitor of NAD(P)H oxidase activation, apocynin, could attenuate the exacerbated LV remodeling and heart failure after MI in high-fat diet (HFD)-induced obese mice with DM. Male C57BL/6J mice were fed on either HFD or normal diet (ND) for 8 weeks. At 4 weeks of feeding, MI was created in all mice by ligating left coronary artery. MI mice were treated with either apocynin (10 mmol/l in drinking water; n = 10 for ND and n = 11 for HFD) or vehicle (n = 15 for ND and n = 13 for HFD). HFD significantly increased body weight (BW), adipose tissue mass, fasting plasma glucose and insulin levels compared to ND after 4 and 8 weeks. HFD + MI had significantly greater LV end-diastolic diameter (LVEDD; 5.7 ± 0.1 vs. 5.3 ± 0.2 mm) by echocardiography, end-diastolic pressure (EDP; 12 ± 2 vs. 8 ± 1 mmHg) and lung weight/tibial length (10.1 ± 0.3 vs. 8.7 ± 0.7 mg/mm) than ND + MI, which was accompanied by an increased interstitial fibrosis of non-infarcted LV. Treatment of HFD + MI with apocynin significantly decreased LVEDD (5.4 ± 0.1 mm), LVEDP (9.7 ± 0.8 mmHg), lung weight/tibial length (9.0 ± 0.3 mg/mm), and concomitantly interstitial fibrosis of non-infarcted LV to ND + MI level without affecting BW, glucose metabolism, infarct size and aortic pressure. On the other hand, treatment of ND + MI with apocynin did not affect LV remodeling and failure. NAD(P)H oxidase activity, O 2 − production measured by lucigenin chemiluminescence, and thiobarbituric acid-reactive substances were increased in non-infarcted LV tissues from HFD + MI, all of which were also attenuated by apocynin to ND + MI level. Type 2 DM was associated with the exacerbation of LV remodeling and failure after MI via increasing NAD(P)H oxidase derived O 2 − production, which may be a novel important therapeutic target in advanced heart failure with DM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call