Abstract

Abstract Preclinical cancer models have been vital contributors in minimizing this burden as well as understanding basic cancer cell biology, however conventional and modern cancer models do not accurately or reliably recapitulate the complex in vivo tumor environment. Clinical significance of discoveries made using in vitromodels requires an understanding of the limitations imparted from cancer cells in a non-native environment. An ideal pre-clinical cancer platform that mimicks in vivo molecular phenotypes is essential for achieving effective drug screening and personalized treatments. This study aims to elucidate biological processes deficient in conventional in vitro methods from in vivo grown allograft cancer cells via transcriptome analysis. The effects of culturing conditions on cancer cells were analyzed via whole transcriptome RNA sequencing on a mouse mammary carcinoma (4T1) cell line grown in multiple culture conditions: 2D (monolayer) or 3D (spheroid) constructs under static or dynamic flow in addition to 4T1 cells isolated from subcutaneous or orthotopically grown tumors into the mammary fat pad of immune-competent, BALB/c mice. Comparative analysis of whole transcriptomic profiles of 4T1 cells in differing culturing conditions reveals distinct biological processes fostered by their environment. Monolayer culture shows enrichment in gene ontologies promoting proliferation, cell cycle progression, and protein synthesis. Compared to monolayer culture all 3-dimensional culturing methods encouraged the expression of proteins known to be critical to tumor progression such as extracellular matrix remodeling, adhesion, and differentiation. Furthermore, spheroid culture introduced heterogeneity as evidenced by upregulation of hypoxic induced genes and regulation of multicellular organism development processes. As expected, 4T1 cells expanded in vivo upregulated genes associated with processes difficult to recapitulate in vitro such as cell migration, inflammatory response, and angiogenesis. 3D culturing methods are able to recapitulate aspects of tumor heterogeneity yet fail to incorporate the complex heterogeneous cell composition and transient fluxes in nutrients and drugs found in vivo. Findings from this study demonstrate the behavioral and transcriptional alterations imparted from environmental factors. Additionally, clinically relevant in vitro testing can be improved by the incorporation of factors found in the native tumor microenvironment to existing 3D culturing approaches. This study received funding from LLNL LDRD grant 19-SI-003. This work was conducted under the auspices of the USDOE by LLNL (DE-AC52-07NA27344). Citation Format: Nicholas Hum, Aimy Sebastian, Wei He, Monica L. Moya, William F. Hynes, Jonathan J. Adorno, Aubree Hinckley, Elizabeth K. Wheeler, Matthew A. Coleman, Gabriela G. Loots. RNA-seq comparisons of in vitro and in vivo cancer model platforms: Monolayer, spheroids, immunodeficient, and syngeneic mouse model [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 37.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.