Abstract
Recently, we have shown that disturbed flow, characterized by low and oscillatory shear stress, caused by a partial ligation of mouse left carotid artery (LCA) rapidly induces atherosclerosis. Using the partial ligation model and genome-wide microarray study with aortic endothelial RNAs obtained directly from the flow-disturbed carotid arteries, we previously identified mechanosensitive genes in mouse endothelial RNA including LIM domain only 4 ( lmo4 ). Here we report that LMO4 is a shear-sensitive protein that regulates endothelial inflammation. Lmo4 was up-regulated by disturbed flow in mouse LCA compared to the contralateral right CA (RCA) exposed to stable flow. At protein levels, LMO4 expression was significantly higher not only in LCA in our surgical model but also in the lesser curvature (flow-disturbed and athero-prone region of mouse aortic arch) compared to the greater curvature (stable-flow and ather-protected region). In addition, immunohistochemical staining of LMO4 in human coronary arteries revealed that its expression is detectable only in intimal endothelial cells, but not in medial cells. While LMO4 is known as a potential oncogene and associated with growth, migration and invasion of breast cancer cells, its role in cardiovascular system is not known to our knowledge. We tested a hypothesis that LMO4 is a mechanosensitive gene and plays a critical role in regulation of endothelial cell biology. LMO4 protein expression was robustly induced by oscillatory shear stress (OS) compared to laminar shear (LS) in human umbilical vein endothelial cells (HUVEC). Treatment of HUVEC with siRNA against LMO4 significantly inhibited OS-induced inflammation and migration, but not apoptosis and cell cycle progression. Further, LMO4 siRNA treatment significantly blunted expression of VCAM-1 and interleukin-8 induced by OS in endothelial cells. These results suggest that LMO4 is a shear-induced gene that plays a critical role in OS-induced endothelial inflammation and migration, and potentially in atherosclerosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, Thrombosis, and Vascular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.