Abstract

Previous studies have indicated that a deficiency in the formation of 20-HETE in the proximal tubule and thick ascending limb of Henle in Dahl S rats increases sodium reabsorption and contributes to the development of hypertension. The present study examined whether the lack of 20-HETE production in the renal vasculature contributes to the progression of renal injury by altering the myogenic or tubuloglomerular feedback (TGF) response of the afferent arteriole (Af-Art). The production of 20-HETE was significantly lower by 54% in renal microvessels isolated from the kidneys of Dahl S rats versus that seen than in SS.5BN consomic strain in which chromosome 5 from the Brown Norway (BN) rat containing the CYP4A genes responsible for the formation of 20-HETE was transferred into the Dahl S genetic background. The luminal diameter of the Af-Art decreased by 14.7± 1.5% (from 20.5 ± 0.7 to 17.5 ± 0.8 μm, n=6) in SS.5BN rats whereas the diameter of the Af-Art remained unaltered in Dahl S rats (from 20.1 ± 0.6 to 21.7 ± 0.6 μm, n=7) when the perfusion pressure was increased from 60 mmHg to 120 mmHg. In other experiments, adenosine (1 μM) reduced the diameter of the Af-Art in the SS.5BN rats by 15±0.7% (from 20.1 ±0.4 to 17.1 ± 0.9 μm, n=3) whereas the Af-Art of Dahl S rats was unaltered. However, administration of a 20-HETE synthesis inhibitor, HET0016 (1 μM, n=6), or a selective 20-HETE antagonist, 6, 15-20-HEDE (10 μM, n=6) completely blocked the myogenic and adenosine responses in the Af-Art of SS.5BN rats but it had no effect in Dahl S rats. Administration of a 20-HETE agonist, 5, 14-20-HEDE (1 μM) restored the myogenic response (from 20.7 ± 0.7 to 17.6 ± 0.6 μm, n=7) and vasoconstrictor response to adenosine in the Af-Art of Dahl S rats. These studies confirm the key role of 20-HETE in modulating the responsiveness of the Af-Art and indicate that a deficiency in the formation of 20-HETE in renal microvessels contributes to the marked susceptibility of Dahl S rats to develop hypertension induced renal injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.