Abstract

Abstract Glioblastomas (GBM) are the most aggressive brain cancers without effective therapeutics. The Hippo pathway transcriptional coactivators YAP/TAZ were implicated as drivers in GBM progression and could be therapeutic targets. Here, we found in an unbiased screen of 1650 compounds that amlodipine is able to inhibit survival of GBM cells by suppressing YAP/TAZ activities. Instead of its known function as an L-type calcium channel blocker, we found that amlodipine is able to activate Ca2+ entry by enhancing store-operated Ca2+ entry (SOCE). Amlodipine as well as approaches that cause store depletion and activate SOCE trigger phosphorylation and activation of Lats1/2, which in turn phosphorylate YAP/TAZ and prevent their accumulation in the cell nucleus. Furthermore, we identified that protein kinase C (PKC) beta II is a major mediator of Ca2+-induced Lats1/2 activation. Ca2+ induces accumulation of PKC beta II in an actin cytoskeletal compartment. Such translocation depends on inverted formin-2 (INF2). Depletion of INF2 disrupts both PKC beta II translocation and Lats1/2 activation. Functionally, we found that elevation of cytosolic Ca2+ or PKC beta II expression inhibits YAP/TAZ-mediated gene transcription. In vivo PKC beta II expression inhibits GBM tumor growth and prolongs mouse survival through inhibition of YAP/TAZ in an orthotopic mouse xenograft model. Our studies indicate that Ca2+ is a crucial intracellular cue that regulates the Hippo pathway, and that triggering SOCE could be a strategy to target YAP/TAZ in GBM. Citation Format: Zhijun Liu. Induction of store operated calcium entry (SOCE) suppresses glioblastoma growth by inhibiting the Hippo pathway transcriptional coactivators YAP/TAZ [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3552.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.