Abstract

While global changes in gene expression are a hallmark of cardiac hypertrophy, much less is known regarding the epigenetic factors driving these changes. Local chromatin packing and gene accessibility, which governs transcriptional status, has been correlated with specific post-translational modifications on the histone tails of nucleosomes occupying these regions. However, the specific alterations in histone post-translational modifications driving gene expression changes during cardiac hypertrophy are largely unknown. To identify myocyte specific changes in histone post-translational modifications during cardiac hypertrophy we performed label-free quantitation of nuclear proteins from isolated neonatal rat ventricular myocytes exposed to the hypertrophic agonists, phenylephrine and isoproterenol. Peptide samples were analyzed on a Thermo Orbitrap Velos Pro mass spectrometer using CID & HCD fragmentation. Differential expression analysis was performed using the Progenesis LC-MS software where modified histone peptides were normalized against total protein expression. We observed multiple known and novel post-translational modifications on each of the four core histones, many of which changed in the setting of hypertrophy. To validate these findings in an animal model we performed the same analysis of histone post-translational modifications from cardiac tissue of mice under basal conditions or after pressure-overload induced hypertrophy. This study provides the first global characterization of myocyte specific changes in histone post-translational modifications in cardiac hypertrophy and highlight basic mechanisms of genomic reprogramming operative in disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.