Abstract

Abstract Background: The tumoricidal small molecule MPC-9528 is a picomolar inhibitor of nicotinamide phosphoribosyltransferase (Nampt). Nampt catalyzes the first and rate-limiting step in NAD synthesis from nicotinamide. Nicotinic acid phosphoribosyltransferase (Naprt) catalyzes the first and rate-limiting step in an alternate pathway of NAD synthesis from nicotinic acid (NA). Cancer cells are particularly dependent on NAD and many cancer cell lines, but not most normal tissues, are deficient in Naprt activity. Therefore administration of NA could prevent MPC-9528-induced NAD depletion in normal tissues, but not in Naprt-deficient tumors, resulting in greater therapeutic index and efficacy. Methods: Cell viability was determined based on ATP levels. Naprt protein expresson was quantified by western blot and qRT-PCR. NAD was acid-extracted from cells and quantified by a coupled reaction based on fluorescent resorufin. Xenograft studies were performed in nu/nu mice. Results: In 44 out of 153 cancer cell lines surveyed, NA did not prevent MPC-9528-induced cell death, which correlated with low to undetectable levels of Naprt. MPC-9528-induced NAD depletion and cell death in HCT116 colon carcinoma cells were prevented by the addition of NA, consistent with high Naprt expression. A single dose of MPC-9528 at the maximum-tolerated dose (MTD) of 75 mg/kg caused tumor regression in HCT116 xenografts and NA coadministration completely blocked this effect. NA also completely blocked mortality in mice induced by 300 mg/kg MPC-9528, consistent with the finding that most mouse tissues have high Naprt expression. In Naprt-deficient MIA PaCa-2 xenografts, NA coadministration allowed tolerance of 200 mg/kg MPC-9528 with a substantially increased anti-tumor response relative to the MTD of 75 mg/kg MPC-9528 alone. Conclusions: Low Naprt expression correlates with the lack of effect of NA on MPC-9528 tumoricidal activity. Because Naprt deficiency is prevalent in cancer cell lines and in primary tumor specimens, but not in normal tissues, NA coadministration with MPC-9528 should increase the tolerability and efficacy of MPC-9528 in patients with Naprt-deficient tumors. A companion diagnostic designed to measure Naprt expression or activity in tumors could be used to identify tumors that would most likely benefit from such combination therapy. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 3526. doi:10.1158/1538-7445.AM2011-3526

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.